Commit a4fd5412 authored by Bruce's avatar Bruce

Upload New File

parent 81ee8dac
import cv2
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPool2D
from keras.optimizers import SGD
from keras import backend as K
import tensorflow as tf
def constructmodel(nb_classes):
# nb_classes = len(charset)
img_rows, img_cols = 9, 34
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
model = Sequential()
model.add(Conv2D(16, (5, 5),input_shape=(img_rows, img_cols,3)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(nb_pool, nb_pool)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# model.summary()
return model
def load_model():
global model1
model1.load_weights("./model/two_type_judge.h5")
# this is key : save the graph after loading the model
global graph1
graph1 = tf.get_default_graph()
model1 = constructmodel(2)
load_model()
def SimplePredict(image):
image = cv2.resize(image, (34, 9))
image = image.astype(np.float) / 255
with graph1.as_default():
res = np.array(model1.predict(np.array([image]))[0])
return res.argmax()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment