Commit 2fbb3cf9 authored by YONG-LIN SU's avatar YONG-LIN SU

add func to create the folder for save snapshot

parent 50f8415a
......@@ -10,6 +10,7 @@ from skimage.transform import resize
from sklearn.preprocessing import LabelEncoder
from keras.models import model_from_json
import numpy as np
import os
# In[2]:
......@@ -34,12 +35,25 @@ print("Facenet預測模型載入完成")
# 載入SVM分類器
clf=joblib.load('../model/20190622181256/20190622181256.pkl')
clf=joblib.load('../model/20190624135811/20190624135811.pkl')
# 載入LabelEncoder
le=LabelEncoder()
le.classes_ =np.load('../model/20190622181256/classes.npy')
le.classes_ =np.load('../model/20190624135811/classes.npy')
print("SVM分類器載入完成")
# 建立儲存影像位置
with open('../model/20190624135811//labels.txt') as f:
lines = f.readlines()
for i in range(len(lines)):
name=lines[i].split('\n')[0]
save_path=os.path.abspath('../save/')
name_path=os.path.join(save_path,name)
if(not os.path.isdir(name_path)):
os.mkdir(name_path)
os.mkdir(os.path.join(name_path,'login_'))
os.mkdir(os.path.join(name_path,'logout_'))
os.mkdir(os.path.join(name_path,'error_'))
# In[5]:
......@@ -107,16 +121,25 @@ def infer(le, clf, img):
embs = calc_embs(face_cropped(img,faces,10))
# pred = le.inverse_transform(clf.predict(embs))
pred=get_labels(le,clf,embs)
return [faces,pred]
# pred=get_labels(le,clf,embs)
results,confidences=get_labelsNconfidence(le,clf,embs)
return [faces,results,confidences]
# Labels 解析
def get_labels(le,clf,embs):
socres=clf.predict_proba(embs)
results=[]
for s in socres:
print(s)
if(s[s.argmax()]>0.5):
results.append(le.inverse_transform([s.argmax()])[0])
else:
results.append('Unknow')
return results
\ No newline at end of file
return results
# Labels 解析回傳結果與分數
def get_labelsNconfidence(le,clf,embs):
socres=clf.predict_proba(embs)
results=[]
confidences=[]
for s in socres:
results.append(le.inverse_transform([s.argmax()])[0])
confidences.append(s[s.argmax()])
return results,confidences
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment